Ellos nos dicen:
Las proteínas son la parte más importante como bloques de construcción de la vida. La hablididad de obtener una estructura de proteína de alta resolución es la clave del descubrimiento de drogas (fármacos) desde que la estructura naturalmente revela sitios que pueden ser el objetivo de las drogas. Hay diferentes métodos para determinar la resolución de la estructura de la proteína, tales como cristografía de rayos x, los cuales nos ayudan a comprender más la estructura de una proteína. [...] Recientemente, se ha asociado a los sensores cuánticos con el "nitrogen-vacancy (NV)" en el centro del diamante. (trad. realizada por Mauricio Ortiz).
NV centers in bulk diamond have mapped the location
of single 13C nuclear spins inside the diamond crystal
[12–14], while shallow-implanted NVs have recently
demonstrated the ability to sense a small number of nuclear
spins in various organic materials [15–20], as well as single
and small ensembles of electronic spins outside the
diamond sensor.
Cito sus conclusiones:
We proposed a practical method for atomic-scale nuclear
spin imaging in biomolecules using NV centers in diamond.
Recent developments in materials fabrication
[24,57], ion implantation [58,59], and coherent control
techniques [60,61] have brought diamond magnetometers
close to the threshold of single nuclear spin sensitivity.
These quantum sensors have the potential to be an
important tool in proteomics, as they overcome some of
the challenges plaguing other experimental techniques,
such as x-ray diffraction and conventional NMR. Most
prominently, they would not require crystallization of the
sample, a challenge for many classes of biomolecules
such as membrane proteins, nor large sample sizes.
Our novel strategy combines coherent control of the NV
sensor with an intrinsic quantum memory to enhance the
sensor spectral resolution. This control strategy not only
creates a sharp dynamic filter by alternating periods of a
spin-lock Hamiltonian with evolution under a gradient
field, but it also provides other advantages. The sequence
is compatible with homonuclear decoupling, thus allowing
sensing beyond the natural biomolecule NMR linewidth. In
addition, our technique allows mapping the couplings
among the spins themselves, using them as local probes
of their environment. The resulting multidimensional NMR
spectra highlight spatial correlations in the sample, lift
spectral overlaps due to symmetries, and aid the structure
reconstruction algorithms. This would allow us to resolve
the contributions in the NV signal arising from different
nuclear spins in a dense sample and to use the acquired
information to determine the nuclear spin positions.
Reconstructing a protein local 3D structure under its natural
conditions would allow researchers to work backwards
and design compounds that interact with specific sites.
By combining the strength of NMR-inspired control
techniques with the quantum properties of NV center spins,
the proposed strategy for magnetic resonance detection at
the nanoscale promises to make diamond-based quantum
sensors an invaluable technology for bio-imaging.
En mi opinión, es un poco complicado imaginarse los resultados, ya que su trabajo no es algo sencillo. Ellos tuvieron que realizar algunos cálculos, y modificar, de acuerdo a sus necesidades, ciertos métodos para la obtención de sus resultados. Su trabajo ayudará en la industria de la farmacia y, quizás, a los que se dedican a la resonancia magnética, al poder hacer sensores cuánticos de diamantes para las imágenes.
Los invito a leer esta publicación completa, en: https://journals.aps.org/prx/pdf/10.1103/PhysRevX.5.011001
Subida por: Luis Mauricio Ortiz Gálvez.
No comments:
Post a Comment