Saturday, October 29, 2011

Speedy Homemade-Explosive Detector

“Homemade bombs are much harder to detect,” says Michael Breadmore, associate professor of chemistry at the University of Tasmania, in Australia. The problem is that these kinds of explosives contain inorganic molecules, such as nitrates and chlorates, that aren’t volatile. It takes some finesse, and time, to separate these ions out of a sample for detection, Breadmore says. Speed is key in explosives detection, he adds: Security officials don’t want to further irritate airline passengers during screening. Also investigators need to track down the source of an explosive, and its maker, as quickly as possible after a bomb detonates.

To speed up the process, Breadmore’s lab, with the support of Australian government agencies, developed instrumentation and chemistry to identify inorganic explosives before and after detonation in less than 60 seconds. The technique is based on capillary electrophoresis. After collecting a sample, either by swabbing a suitcase handle or gathering debris left after an explosion, the investigator dissolves it and then injects the solution into a capillary filled with a flowing electrolyte solution under the influence of a strong, applied electric field. The sample’s ions move through the capillary at different speeds depending on their electrical charge and size. As they move past a conductivity detector, the investigator can identify the ions based on their charge and the time it took them to travel through the capillary.

As proof of concept, the Tasmanian researchers showed that this setup could detect nitrate, perchlorate, chlorate, and azide molecules from detonated inorganic explosives in soil samples

Avaible at http://pubs.acs.org/cen/news/89/i44/8944_20111028lnj1.html

No comments:

The "Silver Song"

Este video es obra creativa de Armando Isaac, para el curso de Química Inorgánica I.