Thursday, May 02, 2013

Neighbors Move Electrons Jointly: Ultrafast Collective Electron Transfer After Excitation of Single Electron


Photochemistry and molecular photovoltaics make frequent use of so-called transition metal complexes which consist of a central metal ion bonded to a group of surrounding ligands. Such materials display a strong absorption of ultraviolet or visible light, making them attractive as primary light absorbers in molecular solar cells and other devices of molecular optoelectronics. Absorption of light is followed by an extremely fast shift of electrons from the metal ion to the ligands, a mechanism that is essential for generating an electric voltage. All applications rely on solid state materials in which transition metal complexes are densely packed and can interact with each other. So far, the influence of this interaction on the very fast electron motions following the absorption of light has remained unclear.
In the current issue of Journal of Chemical Physics, Benjamin Freyer, Flavio Zamponi, Vincent Juve, Johannes Stingl, Michael Woerner, Thomas Elsaesser and Majed Chergui report the first in-situ x-ray imaging of electron and atom motions induced by such an electron transfer excitation. For the prototype material [Fe(bpy)3]2+(PF6-)2, they show time-dependent 'electron maps' derived from x-ray snapshots taken with 100 fs long hard x-ray flashes. Taking x-ray snapshots at various times during and after the optical pulse that triggers the charge transfer, creates a molecular movie of electron and atom motions.
To the big surprise of the researchers, the time-dependent 'electron maps' reveal a transfer of electronic charge not only from the Fe atoms to the bipyridine units but -- so far unknown -- an even larger amount of electronic charge from the PF6-counterions to the bipyridine units. The analysis of the x-ray snapshots shows that the charge transfer affects approximately 30 complexes around the directly photo-excited one. This collective electron response is caused by the electric Coulomb forces between the different ions and minimizes the total electrostatic energy in the crystal. Such behavior is highly favorable for charge collection and injection in optoelectronic devices.
Sticks and balls model of the transition metal complex iron(II)-tris-bipyridine [Fe(bpy)3]2+. Iron-atoms (Fe) are brown, nitrogen (N) blue, carbon grey, and hydrogen (H) white. The six nitrogen atoms are at the corners of an octahedron around the Fe atom. The planes of the 3 bipyridine subunits (N2C10H8) are mutually perpendicular.



No comments:

Construyen el transistor más pequeño de la historia, 500 veces más fino que una bacteria

Los investigadores, del Departamento de Energía del laboratorio Berkeley (Estados Unidos), se ha podido construir el transistor más pequeño...